Publications

Check our peer-reviewed journal papers and conference papers.

Impact of Vegetation Gradient and Land Cover Conditions on Soil Moisture Retrievals from Different Frequencies and Acquisition Times of AMSR2

IEEE Transactions on Geoscience and Remote Sensing

April 1, 2023

Estimating soil moisture from space using various microwave wavelengths is essential for predicting natural disasters and analyzing the Earth's water cycle. This study examines how well space-based technology can measure soil moisture (SM) and how it performs in different environments. It found that AMSR2 C-band products work better in areas with more vegetation, while X-band products are less effective. In areas with little vegetation, all AMSR2 products have weaker performance because of their limitations in detecting moisture in dry soil. The study also found that daytime measurements work better in areas with less vegetation, while nighttime measurements are more effective in densely vegetated areas. By using different products based on their strengths and weaknesses, researchers can improve the accuracy of soil moisture measurements, but this may result in reduced coverage of the area being studied.

Performance Assessment of SM2RAIN-NWF using ASCAT Soil Moisture via Supervised Land Cover-Soil-Climate Classification

Remote Sensing of Environment

February 1, 2023

Estimating precipitation from space using microwave satellite systems is essential for managing water resources, predicting natural disasters, and analyzing the Earth's water cycle. This study compares two algorithms, SM2RAIN and SM2RAIN-NWF, for estimating rainfall using soil moisture data. The newer SM2RAIN-NWF algorithm offers improved results by combining SM2RAIN with a net water flux model. We found that SM2RAIN-NWF performed better than SM2RAIN, especially in arid and semi-arid regions. The study also discovered that drainage played a crucial role in improving rainfall estimates, while evapotranspiration had a minimal impact.

A comprehensive Assessment of SM2RAIN-NWF using ASCAT and A Combination of ASCAT and SMAP Soil Moisture Products for Rainfall Estimation

Science of The Total Environment

September 1, 2022

Rainfall estimation using remote sensing technology offers a more accurate alternative to traditional measurement methods due to its high resolution in both time and space. The SMA2RAIN-NWF algorithm, an improved version of the original SM2RAIN algorithm, uses satellite soil moisture data to estimate rainfall. This study aims to evaluate the effectiveness of SMA2RAIN-NWF using multiple soil moisture products and different aggregation periods. The results show that the algorithm performs better as the aggregation levels increase and that it is more effective in urban areas. Overall, the SMA2RAIN-NWF algorithm demonstrates improved performance compared to the original SM2RAIN algorithm.

Combined Use of Crop Yield Statistics and Remotely Sensed Products for Enhanced Simulations of Evapotranspiration within an Agricultural Watershed

Agricultural Water Management

April 1, 2022

Predicting water cycling in agricultural watersheds is challenging due to factors like farming practices. This study looks at using remote sensing evapotranspiration (ET) data and crop yield information to improve the accuracy of the Soil and Water Assessment Tool (SWAT) model. By adding more constraints to the model, such as crop yield, the number of acceptable parameter sets was reduced, and the model's performance improved. The results suggest that using crop yield data as an additional constraint can help reduce uncertainty and increase the accuracy of ET predictions in agricultural watersheds.

First Attempt of Global-Scale Assimilation of Subdaily Scale Soil Moisture Estimates from CYGNSS and SMAP into a Land Surface Model

Environmental Research Letters

July 1, 2021

Soil moisture is important for understanding the global water cycle, but current satellite measurements are not continuous in time or space. This study combines data from NASA's Cyclone Global Navigation Satellite System (CYGNSS) and the Soil Moisture Active Passive (SMAP) to improve soil moisture estimates in a land surface model (LSM). The results show a 61.3% improvement in LSM soil moisture accuracy when combining the two satellite systems. However, using satellite data in areas with dense vegetation can lead to less accurate results. This research is the first to use global GNSS-based soil moisture observations in LSMs, which can help fill gaps in soil moisture measurements and improve our understanding of the water cycle.

Deep Learning Approach to Predict Peak Floods and Evaluate Socioeconomic Vulnerability to Flood Events: A Case Study in Baltimore, MD, U.S.A

2021 SIEDS

April 1, 2021

As the intensity and frequency of storm events are projected to increase due to climate change, local agencies urgently need a timely and reliable framework for flood forecasting, downscale from watershed to street level in urban areas. Integrated with property data with various hydrometeorological data, the flood prediction model can also provide further insight into environmental justice, which will aid households and government agencies’ decision-making. This study uses deep learning (DL) methods and radar-based rainfall data to predict the inundated areas and analyze the property quickly and demographic data concerning stream proximity to provide a way to quantify socioeconomic impacts. We expect that our DL-based models will improve the accuracy of forecasting floods and provide a better picture of which communities bear the worst burdens of flooding, and encourage city officials to address the underlying causes of flood risk.

* = mentored by Dr. Kim

Changes in the Speed of the Global Terrestrial Water Cycle Due To Human Interventions

Hyunglok Kim, Wade T. Crow, and Venkataraman Lakshmi
-
Under Preperation

Exceeding 60% precipitation transformed into terrestrial water storage in global river basins

Baoming Tian, Yulong Zhong, Hyunglok Kim, Xing Yuan, Xinyue Liu, Enda Zhu, Yunlong Wu, Lizhe Wang
Communications Earth & Environment
Minor Revision

Developing Independent CYGNSS Soil Moisture Retrieval Algorithm with Mitigated Vegetation Effects: Incorporating a Two-Step and Relative SNR Approaches

Ziyue Zhu, Hyunglok Kim*, Venkataraman Lakshmi
-
Under Preperation

A Novel Soil Moisture Validation Method Utilizing Brightness Temperature

Ziyue Zhu, Runze Zhang, Bin Fang, Hyunglok Kim, Venkataraman Lakshmi
-
Major Revision

Observational Analysis of Long-term Streamflow Response to Flash Drought in the Mississippi River Basin

Sophia Bakar, Hyunglok Kim, Venkataraman Lakshmi
Weather and Climate Extremes
Major Reivison

Towards Self-calibration of Rainfall Estimation through Soil Dynamics and its Signals Using Supervised and Unsupervised Machine Learning Clustering Methods over CONUS

Mohammad Saeedi, Hyunglok Kim, and Venkataraman Lakshmi
-
under review

A Stand-Alone Framework for Predicting Spatiotemporal Errors in Satellite-Based Soil Moisture Using Tree-Based Models and Deep Neural Networks

Subin Kim, Hai Nguyen, Yonghwan Kwon, Hyunglok Kim
GIScience & Remote Sensing
Major Revision

Investigating the vulnerability and resilience of different land cover types to flash drought: A case study in the Mississippi River Basin

Sophia Bakar, Hyunglok Kim, et al.
Journal of Environmental Management
Major revision

Enhancing Detection of Flood-Inundated Areas using Novel Hybrid PoLSAR- Metaheuristic-Deep Learning Models

Fatima et al.
-
Under Preperation

Deep Learning and Bayesian Inference via Samplings and Variational Approximations to Characterize Spatially Continuous Global-scale Satellite-based Soil Moisture Error Patterns

H. Kim, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2021

Impact of Climate Change on Road Networks: Travel Demand, Machine Learning, and Flooding Simulation Models

S. Ryu, H. Kim, E. Cho, R. Zhang
US-KOREA Conference on Science, Technology, and Entrepreneurship
January 1, 2021

Leveraging Soil Moisture for Early Flood Detection

V. Sunkara, C. Doyle, H. Kim, B. Tellman, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2020

Detecting Inland Waterbodies Using GNSS-R Data: Intercomparison of Previous Methods and a New Machine Learning Approach

G. Pavur, H. Kim, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2020

An Integrated Framework to Predict Peak Flood and Map Inundation Areas in the Chesapeake Bay Using Machine Learning Methods with High-Resolution Lidar DEM and Satellite Data

R. Zhang, H. Kim, L. Band, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2020

Error Characteristic Assessments of Soil Moisture Estimates from Satellites and Land Surface Models: Focusing on Forested and Irrigated Regions

H. Kim, J. Wigneron, S.V. Kumar, J. Dong, W. Wagner, M.H. Cosh, D.D. Bosch, C.H. Collins, P.J. Starks, M.S. Seyfried, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2020

Producing Satellite-based Diurnal Time-scale Soil Moisture Retrievals using Existing Microwave Satellites and GNSS-R Data

H. Kim, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2020

Assimilation of SMAP-enhanced and SMAP/Sentinel-1A/B soil moisture data into land surface models

H. Kim, V. Lakshmi, S. Kumar, Y. Kwon
European Geosciences Union, General Assembly Conference
December 1, 2020

Assimilation of GPS soil moisture data from CYGNSS into land surface models

H. Kim, Y. Kwon, S.V. Kumar, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2019

The Impact of Irrigation on the Water Cycle in the Continental United States (CONUS)

H. Kim, V. Lakshmi
American Geophysical Union, Fall Meeting
December 1, 2018

Contact me

If you have a keen interest in the intersection of climate change and its impact on hydrological research fields, I encourage you to consider pursuing a Master's, PhD, or postdoctoral position. By delving deeper into this critical area of study, you can play an essential role in addressing the world's most pressing environmental challenges and help safeguard our water resources, ecosystems, and communities. Your dedication and expertise can significantly contribute to the development of sustainable solutions and innovative approaches to hydrological research. Embark on this exciting journey and become part of the passionate community of scientists working towards a more resilient and environmentally responsible future.