Publications

Check our peer-reviewed journal papers and conference papers.

A Stand-Alone Framework for Predicting Spatiotemporal Errors in Satellite-Based Soil Moisture Using Tree-Based Models and Deep Neural Networks

GIScience & Remote Sensing

May 1, 2025

Soil moisture (SM) is a critical climate variable, and assimilating satellite SM into land surface models via land data assimilation (LDA) enhances continuous SM modeling and climate extreme monitoring. However, LDA often assumes static SM error dynamics, limiting accuracy. This study introduces a novel framework integrating triple collocation analysis (TCA) with machine learning (ML), including Light Gradient Boosting Machine (LGBM) and Deep Neural Networks (DNN), to quantify spatially and temporally continuous satellite-based SM errors globally.

Using only Soil Moisture Active Passive (SMAP) retrieval data, our TCA-based time-variant error prediction models successfully recover error information in regions where SMAP SM error data were previously unreliable. The SMAP-based model outperforms models relying on external datasets like the Global Land Data Assimilation System (GLDAS), offering a robust approach for improving LDA in data-scarce areas. This method also extends to other satellite-based geophysical datasets, broadening its applicability beyond SMAP.

From Theory to Hydrological Practice: Leveraging CYGNSS Data Over Seven Years for Advanced Soil Moisture Monitoring

Remote Sensing of Environment

January 31, 2025

This study explores the potential of the Cyclone Global Navigation Satellite System (CYGNSS) mission for soil moisture (SM) monitoring, highlighting its ability to capture fine-scale SM variability through high revisit frequencies at sub-daily intervals. While CYGNSS was originally designed for tropical cyclone monitoring, its seven-year data record demonstrates significant promise in reliably monitoring diurnal SM dynamics using spaceborne L-band bistatic radar and GNSS-Reflectometry (GNSS-R) technology.

Despite this potential, SM retrieval from CYGNSS remains limited by knowledge gaps and unique challenges tied to its technical design. This study addresses these gaps by analyzing CYGNSS real-world data, synthesizing recent advancements in mitigating external uncertainties, and improving SM inversion techniques. Notably, algorithm-related challenges include accurate partitioning of coherent and incoherent signal components and correcting attenuation effects caused by vegetation and surface roughness. Data-related challenges involve variations in CYGNSS spatial footprint, temporal frequency, signal penetration depth, and incidence angle changes, as well as excessive reliance on reference SM datasets for model calibration, validation, and training. The computational demands of processing CYGNSS’s rapid multi-sampling data further complicate its operational use.

Future research directions identified in this study focus on leveraging machine learning and deep learning approaches to improve CYGNSS SM data quality and quantity. Additionally, assimilating CYGNSS-derived SM data into physical models offers promising opportunities to enhance predictions of hydroclimatic variables and extreme climate events, addressing key challenges in water resource monitoring and climate resilience.

Over 60% precipitation transformed into terrestrial water storage in global river basins from 2002 to 2021

Communications Earth & Environment

January 31, 2025

This paper provides a novel quantitative assessment of the transformation of daily precipitation into terrestrial water storage across 121 global river basins over a two-decade period. The study introduces the average daily fraction of precipitation transformed into terrestrial water storage, leveraging enhanced terrestrial water storage statistical reconstruction and water storage data from the Gravity Recovery and Climate Experiment (GRACE) and its follow-on mission. We reveal that approximately 64% of land precipitation contributes to terrestrial water storage, with notable variations across different climatic and geographical regions. These findings offer critical insights into the interactions between precipitation, land surface processes, and climate change, providing valuable implications for hydrological modeling and future water resource management.

Improving Weather Forecast Skill of the Korean Integrated Model (KIM) by Assimilating SMAP Soil Moisture Anomalies

Quarterly Journal of the Royal Meteorological Society

November 1, 2024

This study examines the impact of assimilating Soil Moisture Active Passive (SMAP) data into the Korean Integrated Model (KIM) to improve global soil moisture estimates and weather forecasts. SMAP soil moisture retrievals are integrated into the Noah land surface model using the ensemble Kalman filter through NASA’s Land Information System. Experiments from March to July 2022 show that assimilating SMAP data, particularly with anomaly-based bias correction, significantly enhances soil moisture estimates and improves weather forecasts, especially in northern Africa and West

A Global Scale Analysis of Subsurface Scattering Signals Impacting ASCAT Soil Moisture Retrievals

IEEE Transactions on Geoscience and Remote Sensing

August 31, 2024

This research discusses the retrieval and validation of soil moisture data from the Advanced Scatterometer (ASCAT), focusing on its applications and challenges. ASCAT data, crucial for various uses like weather prediction and drought monitoring, are compared with similar data from other satellite missions. Validations using multiple datasets highlight dependencies on land cover and vegetation, revealing unexpected quality variations across different environments. A notable issue identified is subsurface scattering, often misattributed to other factors, impacting ASCAT data quality significantly. The study recommends masking affected data using developed indicators and masks to enhance accuracy in practical applications.

Seasonal-scale intercomparison of SMAP and fused SMOS-SMAP soil moisture products

Frontiers in Remote Sensing

August 30, 2024

This study evaluates the performance of two L-band passive microwave satellite sensors, the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP), in monitoring surface soil moisture (SM). The newly developed fused SM product (Fused-IB) derived from SMOS and SMAP observations is compared with the enhanced SMAP-L3 (SMAP-E) SM product against in situ SM data from the International Soil Moisture Network (ISMN) over the period 2016-2020. The comparison considers overall and seasonal performance, focusing on different land use and land cover (LULC) types. Results show that Fused-IB generally outperforms SMAP-E, especially in forested areas, due to the robust SMAP-IB algorithm and higher data coverage. Both products demonstrate higher accuracy in summer and autumn, but face increased uncertainties in forests, grasslands, and croplands during spring and winter due to vegetation growth and rainfall. This study highlights the importance of accounting for seasonal and eco-hydrological factors to improve the accuracy of SM retrieval algorithms.

* = mentored by Dr. Kim

Changes in the Speed of the Global Terrestrial Water Cycle Due To Human Interventions

Kim et al.
-
Under Preperation

Enhancing Detection of Flood-Inundated Areas using Novel Hybrid PoLSAR- Metaheuristic-Deep Learning Models

Fatima et al.
Remote Sensing of Environment
Under Review

Synergistic impact of simultaneously assimilating radar- and radiometer-based soil moisture retrievals on the performance of numerical weather prediction systems

Kwon et al.
Hydrology and Earth System Sciences
major revision

Simultaneous Estimation of Soil Moisture and Soil Organic Matter from Dielectric Measurements - Part 1: Optimal Estimation Strategy

Park et al.
Agricultural and Forest Meteorology
under review

Simultaneous Estimation of Soil Moisture and Soil Organic Matter from in situ Dielectric - Part 2: Application of Optimal Estimation and Machine Learning Approaches

Park et al.
Agricultural and Forest Meteorology
under review

Evaluating Deep Learning Architectures for Streamflow Flash Drought Prediction Across the Contiguous United States

Bakar et al.
Journal of Hydrology
minor revision

Unsupervised Neural and Statistical Clustering for Scalable Rainfall Estimation in Data-Sparse Regions

Saeedi et al.
Water Resources Research
Minor Revision

Dynamics of groundwater-land surface response times as a dryland flash drought diagnosis

Nguyen et al.
Communications Earth & Environment
Under review

Domain-Robust Flood Mapping with PolSAR-Informed Deep Learning in Data-Denied Regions: Evidence from Arid and Monsoonal Environments

Lee et al.
IEEE Transactions on Geoscience & Remote Sensing
Under Review

L-band-like Soil Moisture and Vegetation Optical Depth Can be Retrieved from C-band Soil Moisture

Lee et al.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
to be submitted

Process-Guided Graph Attention Network for Streamflow Predictions in Data-Sparse Regions

Budmala, Kona, Bhowmik, and Kim
Journal of Hydrology
under review

Advancing Flash Drought Prediction from the Land-Atmosphere Perspective: Potential of Remote Sensing Data and Artificial Intelligence Approaches

Kim et al.
TBD
to be submitted

Runoff nonlinearities contribute to increased fall drought susceptibility

Crow, Crompton, Feldman, Anderson, and Kim
Geophysical Research Letters
to be submitted

Beyond satellite-based precipitation data: A novel soil moisture physics framework with Green–Ampt and Bayesian optimization for rainfall estimation

Saeedi, Kim, and Lakshmi
npj Climate and Atmospheric Science
under review

Groundwater flash droughts: global occurrence, terrestrial propagation, and ocean-atmosphere-land drivers

Nguyen and Kim*
One Earth
to be submitted

The First Nationwide Assessment of Water Quality and Its Trends Across South Korea Using Integrated Optical Satellite and Meteorological Observations with a Fine-Tuning Domain Adaptation Approach

Lee and Kim*
TBD
to be submitted

Refining Satellite-Based Soil Moisture Estimations with a Shared Latent Dynamic Feature

Park et al.
GIScience & Remote Sensing
major revision

Seasonal, Pixel-Wise Dynamic SM2RAIN–NWF Parameterization over CONUS via Physics-Informed Deep Learning

M. Saeedi, Z. Zhu, H. Kim, J. Bolten, M. Cosh, V.Lakshmi
International Geoscience and Remote Sensing Symposium
August 1, 2026

Developing the first NASA-Korea Core Validation Site for Microwave Satellite Systems using Very Dense In-situ Soil Moisture Networks

K. Park, J. Jeong, J. Lee, H. Kim
International Geoscience and Remote Sensing Symposium
August 1, 2026

A Joint Retrieval Of Soil Moisture And Vegetation Parameters From Soil Moisture Active Passive

J. Lee, S. Yueh, D. Entekhabi, A. Colliander, J. Im, C. Park, H. Kim
International Geoscience and Remote Sensing Symposium
August 1, 2026

Multi-Sensor Uav Observations For Calibration And Validation Of Super High-Resolution Soil Moisture Data To Support Spaceborne Microwave Soil Moisture Retrievals

J. Jeong, J. Lee, H. Kim
International Geoscience and Remote Sensing Symposium
August 1, 2026

Collaborative Core Validation Site Development For Future Mission Support Within An Integrated NASA-Korea AI Framework For High-Resolution Microwave Remote Sensing

H. Kim
International Geoscience and Remote Sensing Symposium
August 1, 2026

Reconstruction And Prediction Of Missing Radiometric Parameters For Microwave Satellite Systems With Meteorological AI Foundation Models

D. Lee, S. Kim, S. Kim, and H. Kim
International Geoscience and Remote Sensing Symposium
August 1, 2026

An End-to-End Foundation Model for Global Hydrological Estimation Using Multi-Sensor Microwave Observations

S. Kim, S. Kim, and H. Kim
Asia Oceania Geosciences Society
August 1, 2026

Land Data Assimilation of Microwave Satellite-Retrived Surface Soil Moisture Using a Foundation Model

S. Kim, S. Kim, and H. Kim
Asia Oceania Geosciences Society
August 1, 2026

Observing Dynamic Surface Water and Its Influence on Land-Atmosphere Coupling

S. Cho, E. Lee, H. Kim
Asia Oceania Geosciences Society
August 1, 2026

Multi-Sensor Uav Microwave Observations For Satellite Calibration/Validation And Field-Scale Soil Moisture Downscaling For Agricultural Applications

J. Jeong, J. Lee, H. Kim
Asia Oceania Geosciences Society
August 1, 2026

Developing The First NASA-Korea Core Validation Site To Support Current And Future Microwave Satellite Systems For Soil Moisture Retrieval

H. Kim, K. Park, J. Jeong, J. Lee
Asia Oceania Geosciences Society
August 1, 2026

Can flash droughts be revealed through subsurface scattering effects on microwave bistatic radar-based CYGNSS soil moisture retrievals?

H. Nguyen, E. Choi, and H. Kim
Asia Oceania Geosciences Society
August 1, 2026

Microwave-Informed Foundation Modeling for All-Weather Hydrological State Reconstruction

E. Choi, S. Cho and H. Kim
Asia Oceania Geosciences Society
August 1, 2026

Evaluation of Foundation Model-Based Precipitation Using Microwave Satellite Missions

E. Lee, SG. Kim, D. Lee, and H. Kim
Asia Oceania Geosciences Society
August 1, 2026

Toward Differentiable Microwave Observation Operators Using Foundation Models and Deep Neural Networks

D. Lee, E. Lee and H. Kim
Asia Oceania Geosciences Society
August 1, 2026

Physics-Informed Neural Network-based Estimation of Soil Moisture with Tau-Omega Model Parameters from SMAP L-band Brightness Temperatures

J. Lee, J. Im, H. Kim
Asia Oceania Geosciences Society
August 1, 2026

Leveraging Weather Foundation Models for Hydrological Applications: Enhancing Hydrological Prediction through Sophisticated Decoder Design

S. Kim, D. Lee, S. Kim, and H. Kim
European Geosciences Union
May 1, 2026

Fraternal Twin Experiments for Satellite-Constrained Land Data Assimilation Using Deep Learning Surrogate Models

S. Kim and H. Kim
European Geosciences Union
May 1, 2026

Bridging Observational Gaps in Microwave Satellite Signals Using a Meteorological Foundation Models

D. Lee, S. Kim, S. Kim, and H. Kim
European Geosciences Union
May 1, 2026

Weather and Climate Foundation Models Enhance Subseasonal-to-Seasonal (S2S) Precipitation Prediction Using Multi-Source Satellite Observations

E. Lee, S. Kim, D. Lee, V. Budamala, and H. Kim
European Geosciences Union
May 1, 2026

Turning Streams into Rain Gauges: Leveraging Long-Term Streamflow Data to Recover Historical Precipitation

M. Saeedi, H. Kim, J. Bolten, J. Eylander, S. Crisanti, and V. Lakshmi
American Geophysical Union
December 1, 2025

A Novel Hybrid CNN-LSTM Approach to Dynamically Parameterize the Soil Water Balance for Improved and Self-Calibration of Global Rainfall Estimation

M. Saeedi, Z. Zhu, H. Kim, J. Bolten, M. Cosh and V. Lakshmi
American Geophysical Union
December 1, 2025

Understanding drivers and spatial propagation of flash drought in the Contiguous United States using Deep Learning and Explainable AI

S. Bakar, H. Kim, J. Basara, P. Beling, and V. Lakshmi
American Geophysical Union
December 1, 2025

Integrating Temporal and Spatial Strengths: Advancing High-Resolution Global Soil Moisture Gap-Filling through POBI and NSTI Synergy

Z. Zhu, H. Kim, J. Eylander, S. Crisanti, V. Lakshmi
American Geophysical Union
December 1, 2025

Evaluating the Impact of SMAP Soil Moisture Spatial Resolution on Land Assimilation Efficiency and Atmospheric Response

E. Kim, Y. Kwon, S. Jun, K, Seol, I. Kwon, Y. Lee, and H. Kim
American Geophysical Union
December 1, 2025

Assessing Seasonal Soil Moisture–Evapotranspiration Coupling Strength and Its Drought Implications Using Triple Collocation Analysis

E. Choi, S. Kim, Y. Kwon
American Geophysical Union
December 1, 2025

Deep Learning-Based Surrogate Modeling for the Evaluation of Land Data Assimilation Schemes

S. Kim, Y. Kwon, and H. Kim
American Geophysical Union
December 1, 2025

An Analytical Approach for Joint Retrieval of Soil Moisture and Vegetation Parameters from SMAP Observations

J. Lee, J. Im, C. Park, and H. Kim
American Geophysical Union
December 1, 2025

Soil Moisture Estimation Using Surrogate Model and Land Data Assimilation

S. Kim, Y. Kwon, and H. Kim
Asia Oceania Geosciences Society
August 1, 2025

Reconstruct Snowmelt Periods from 1950 to 2100 and Analyze Snowmelt Trends: Using satellite and climate model simulations

N. Kwon, Y. Kown, and H. Kim
Asia Oceania Geosciences Society
August 1, 2025

Predicting root zone soil moisture from satellite-based surface soil moisture with machine learning and deep learning in the United States

K. Park and H. Kim
Asia Oceania Geosciences Society
August 1, 2025

Flood Inundation Prediction and Evaluation in North Korea Using Sentinel-1 Images and Deep Learning Model

J. Kim, S. Lee, and H. Kim
Asia Oceania Geosciences Society
August 1, 2025

Deep Learning-Based Dry-Down Modeling for Soil Moisture Gap-Filling and Land Data Assimilation Applications

D. Nursultanova, H. Kim, S. Kim, and Y. Kwon
Asia Oceania Geosciences Society
August 1, 2025

Groundwater Flash Drought and Its Potential Ocean-Land-Atmosphere Drivers Via Explainable Artificial Intelligence

H. Nguyen and H. Kim
Asia Oceania Geosciences Society
August 1, 2025

Investigation of subsurface scattering signal effects on CYGNSS soil moisture retrieval

H. Nguyen, W. Wagner, and H. Kim
IEEE GNSS+R 2025
June 1, 2025

Investigation of subsurface scattering signal effects on CYGNSS soil moisture retrieval

H. Kim, W. Wagner, N. Nguyen, S. Kim, and Y. Kwon
IEEE GNSS+R 2025
June 1, 2025

Global-scale Satellite-based Agricultural Drought Monitoring from the Land Atmosphere Interaction Perspective

A. Bolatbekkyzy, H. Nguyen and H. Kim
American Geophysical Union
December 1, 2024

Developing the First Long-Term Soil Moisture and Brightness Temperature Measurement Site in South Korea Using L-Band Radiometers and Drones

K. Park, D. Kim, H. Kim
American Geophysical Union
December 1, 2024

Impact of Altered Snow Patterns on Spring Wildfires in Korean Peninsula Using Reanalysis Data in a Warming Climate

N. Kwon, E. Cho, and H. Kim
American Geophysical Union
December 1, 2024

Development of Chlorophyll-ɑ Prediction Model for Inland Reservoirs Using Satellite and Land Surface Model: Applying Deep Learning Approach

S. Lee and H. Kim
American Geophysical Union
December 1, 2024

Enhancing Land Data Assimilation By Considering Spatio-Temporal Error Dynamics of Satellite-based Soil Moisture Data: Integrating TCA and Deep Learning for Accurate Uncertainty Estimation

S. Kim, Y. Kwon, and H. Kim
American Geophysical Union
December 1, 2024

Characteristic Time of Groundwater Recharge as a Climate Indicator for Monitoring Flash Drought

H. Nguyen, A. Bolatbekkyzy and H. Kim
American Geophysical Union
December 1, 2024

Eliminating Calibration Periods in Rainfall Estimation through Soil Moisture Using Growing Neural Gas Clustering

M. Saeedi, S. Kim, H. Kim, and V. Lakshmi
American Geophysical Union
December 1, 2024

Application of Deep Learning Techniques for Streamflow Flash Drought Prediction in the Mississippi River Basin

S. Bakar, H. Kim, and V. Lakshmi
American Geophysical Union
December 1, 2024

Utilizing Large Language Models for Enhanced Soil Moisture Prediction and Gap-Filling in Satellite-Derived Data

Z. Zhu, H. Kim, Z. Zheng, V. Lakshmi
American Geophysical Union
December 1, 2024

Assimilation of Radar Backscatter-based Soil Moisture Data with Time- and Space-varying Observation Error Estimation to Account for Subsurface Scattering

H. Kim, S. Kim, Y. Kwon, W. Wagner
American Geophysical Union
December 1, 2024

Global Scale Mapping of Subsurface Scattering Signals Impacting Scatterometer and SAR Soil Moisture Retrievals

W. Wagner, R. Lindorfer, B. Raml, M. Schobben, H. Kim, and T. Ullmann
American Geophysical Union
December 1, 2024

Simultaneous use of ASCAT and SMAP soil moisture retrievals within an operational land-atmosphere coupled data assimilation system

Y. Kwon, S. Jun, K. Seol, I. Kwon, E. Kim, S. Cho and H. Kim
American Geophysical Union
December 1, 2024

Comparative Analysis of the 2021-2022 Droughts in Kazakhstan, South Korea, and the USA using Remote Sensing and Reanalysis Data

A. Bolatbekkyzy, H. Nguyen and H. Kim
Asia Oceania Geosciences Society
August 1, 2024

Contact me

If you have a keen interest in the intersection of climate change and its impact on hydrological research fields, I encourage you to consider pursuing a Master's, PhD, or postdoctoral position. By delving deeper into this critical area of study, you can play an essential role in addressing the world's most pressing environmental challenges and help safeguard our water resources, ecosystems, and communities. Your dedication and expertise can significantly contribute to the development of sustainable solutions and innovative approaches to hydrological research. Embark on this exciting journey and become part of the passionate community of scientists working towards a more resilient and environmentally responsible future.